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The force distribution on a slender twisted particle 
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The theory of Stokes flows about slender particles is considered for the case in 
which the particle cross-section is arbitrary and non-uniform along the axis of 
the particle, subject to certain smoothness assumptions. As distinct from previous 
works on slender particles in which the particle is represented approximately by 
a line distribution of Stokeslets, the representation adopted here is the exact one 
of a surface distribution of Stokeslets. This representation may then be used to 
recover the familiar one-dimensional integral equation for the equivalent line 
density of Stokeslets, together with estimates for the range of particle shapes for 
which the equation is valid. Within this range it is found that there is a class of 
particles for which the established perturbation scheme, which is used to obtain 
a solution to the integral equation, is singular. This class of particle shapes is 
illustrated by the example of a uniformly twisted particle whose pitch of twist is 
large enough compared with the cross-sectional dimension to ensure the validity 
of the equation, but small enough to make the usual method of solution singular. 
It is shown how the equation may be transformed so that an approximate 
solution can be found by means of a regular perturbation scheme. The results 
indicate that, for each of the axial and transverse components of motion, there is 
an equivalent particle of circular cross-section for which the total force and couple 
are the same as for the original particle. However, the radii of the equivalent 
cylinders are different for each component, the transverse component being 
affected by the twist while the axial component is not. 

1. Introduction 
Recently a number of papers concerning the motion of a rigid slender particle 

in Stokes flows have appeared. Most of these have dealt with particles of circular 
cross-section (see Cox 1970,1971; Tillett 1970), but Batchelor (1970) hasextended 
this work to include particles whose cross-section is not only arbitrary but may 
also vary ‘slowly ’ in size and shape along its length. The basic assumption made 
by all these authors is that the effect of the particle upon the exterior flow is the 
same as if the particle were replaced by a distribution of Stokeslets along its 
straight axis. This leads to an ‘outer’ solution which is matched onto an ‘inner’ 
solution, which is derived by assuming that the flow near the surface of the 
particle is essentially the same as that close to  a particle with a uniform cross- 
section. The outcome of such an analysis is a one-dimensional integral equation 
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for the line density of Stokeslets, in terms of the velocity of the particle relative 
to the ambient flow field. Batchelor (1970) has shown, in principle, how to obtain 
approximate solutions to this equation by a perturbation expansion in the small 
parameter e = - l/lna, where a( < I )  is a measure of the aspect ratio of the 
particle. 

The work described in this paper falls into two parts. The first part is a rederiva- 
tion of Batchelor’s integral equation via an alternative, though related, method. 
We consider the particle to be represented by a distribution of Stokeslets over 
the actual surface, rather than along its axis. This is known (Ladyzhenskaya 
1963) to provide an exact solution to the exterior Stokes problem. The basic 
assumption made is that the Stokeslet distribution has similar smoothness 
properties to those enjoyed by the surface itself. If this is accepted then the 
integral equation for the Stokeslet distribution may be systematically approxi- 
mated until Batchelor’s equation is achieved, together with an estimate of the 
error involved in terms of the surface geometry. In  this work we choose to specify 
the error we are prepared to admit (this is usually determined by the practical 
limits imposed by the method of solution of the integral equation) and thereby 
place a constraint upon the surface geometries we are entitled to  discuss. 

Among these surface geometries is a class for which Batchelor’s perturbation 
scheme is singular. In  $ 3  we illustrate this case by considering in detail a 
particular example for which the analysis is relatively simple. The example 
chosen is that of a uniformly twisted particle whose cross-sectional size and 
shape (but not orientation) are uniform along the axis, and whose pitch of twist, 
while being sufficiently large for Batchelor’s integral equation to be valid, is 
small enough for a straightforward perturbation scheme to be singular. It is 
shown, however, that the equation can be manipulated into a form for which the 
perturbation scheme is regular. 

It is expected that as the twist becomes tighter the total force and couple on 
the particle will tend towards that of a particle of circular cross-section. This is 
borne out by the theory presented here, though there are different equivalent 
radii for the axial and transverse components of motion. The latter is affected 
by the presence of twist while the former is not. 

The intended application of this theory is in the field of suspensions of macro- 
molecular particles in which Brownian motion will be an important effect. This 
means that the special case of alignment of the particle with the direction of the 
flow is of no particular importance, though it is crucial for cases of simple shear 
flow in which Brownian motion is considered to bevirtually absent (see Cox 1971). 
We have therefore allowed ourselves to ignore the precise detail of the flow, the 
forces and indeed the shape of the particle in the neighbourhood of the 
particle ends. 

2. The approximate equation for the force distribution 
It is assumed that the particle is moving freely in a Newtonian solvent (of 

viscosity p) and of infinite extent. In  the absence of the particle the velocity field 
is taken to be a linear function of position; the presence of the particle will perturb 
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this imposed field. With the neglect of inertia the perturbation velocity u(x) 
satisfies Stokes’s equations, vanishes at  infinity and, as the particle is rigid, is 
a linear function of position on the particle surface, the no-slip condition being 
assumed to hold a t  the interface. If we presume that the motion of the particle 
is known, i.e. that u is given on the particle boundary B, then we have a well- 
defined Stokes problem whose solution predicts the force distribution on B to 
first order in the Reynolds number. There is therefore no need to consider the 
associated Oseen problem. Ladyzhenskaya (1963) has shown that the velocity 
field for any external Stokes flow may be generated exactly by a distribution of 
Stokeslets on the surface B. If we let this distribution be denoted by - F (F is 
then the force density experienced by the particle), the relationship between F 
and the perturbation velocity field is, in view of the condition at infinity, 

u(x) = - (8nPL)-qBG(X; Y) . F(Y) CWY) ,  (2.1) 

where 2L is the total length of the particle and 

(2 .2 )  

(Note that throughout this work we are using the dyadic notation, see, for 
instance Happel & Brenner (1965).) Here x and y are position vectors made 
dimensionless with respect to the length scale L. Ladyzhenskaya (1963) has also 
shown that (2.1) is valid in a continuous manner as x approaches and assumes 
a position on B. Therefore, for x on B ,  (2.1) is an exact integral equation for the 
Stokeslet distribution with the ‘known’ linear velocity field U(X) acting as 
a forcing term. The determination of exact solutions to (2.1) for other than simple 
shapes (e.g. the sphere and ellipsoid, for which solutions are already known) is 
probably out of the question. We shall therefore consider only long slender 
shapes, for which approximate solutions are obtainable. 

Batchelor (1970), in his recent work on slender-body theory, derived a one- 
dimensional integral equation for the effective line density distribution of 
Stokeslets. This equation is applicable to particles which have a slowly varying 
change of size and shape along their axes. We propose to rederive his equation, 
using (2.1) as a starting point, and to derive estimates for the range of rates of 
variation that are admissible. 

The particle is assumed to be straight in the sense that there is a straight axis 
within the particle. We take the orientation of the axis to be denoted by the unit 
vector e and its total length to be 2L. A typical point on the axis, relative to the 
midpoint, is given by gLe, where - 1 < fl  < + 1. For each f l  the intersection of 
the particle surface and the plane through orthogonal to e defines a contour 
bounding the cross-section. The contour is described by the vector function 
aLR([,q5), which depends on both 5 and the ‘angular’ parameter 4. The 
dimensionless parameter a, called the aspect ratio of the particle, is so chosen 
that the maximum perimeter size is 2na.L. Since the particle is assumed to be 
slender we take a < 1. The configuration is shown i n  figure 1 for the particular 
example of a uniformly twisted particle. 
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FIUURE I .  A portion of a uniformly twisted particle 

The surface B may be described by a vector function (made dimensionless 
with respect to L )  of the two parameters 6 and q5 in the form 

X(5’ #) = Ee + aR(E, (2.3) 

Y b , @  = ye + @, (2.4) 

Y - x = (7 - 6 )  e + a{R(7,4 - R(5, &}. 

Let r = R(7, 8 )  - R(6, $)’ = Irl, (2.5) 

Consequently, if we let the ‘source point’ in (2.2) be described by 

we have 

then, after some rearrangement, we may write (2.2) in a form in which the 
smallness of a can be exploited. Thus 

Here we have used the fact that e .  r = 0. Also, from (2.4) we may calculate the 
surface element dB( y )  : 

dB(y) = L2adydB/(e-+aRy^) x Rel, 

where the subscripts denote partial differentiation with respect to-the variable 
indicated. From this we deduce that 

dB(y) = L2alRel d7d8{1+O(a21R,12)). (2.6) 

Consequently if we wish to use the approximate surface element L2a d7 dB I ReI , 
then we are restricted to considering particles whose shape varies only slowly 
along the axis in the sense that a2IR,I2 is acceptably smaller than unity. The 
question of just how small this has to be is considered in what follows. It is evident 
that close to the ends of the particle a2 IR,I2 may well cease to be negligible, and 
so we cannot expect the analysis to hold in those regions. A separate consideration 
is required if a detailed knowledge of the force distribution about the ends is 
desired. We shall not do this but instead we shall assume that, although our 
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analysis will produce inaccurate results for the force density close to the ends, 
the contributions from these regions to the total force and couple (or any other 
integral force parameter) will be negligible to the order to which we are working. 

Equation (2.1) may now be written as 

In  the appendix we show that after making certain plausible assumptions it is 
possible to obtain an approximation to (2.7). This approximate equation is 

where r = R(5,@ --w, 9) (2.9) 

and e = - l/lna, (2.10) 

the latter being considered small. The error term in (2.8) depends upon the 
particle shape. It is shown in the appendix that to restrict the error to be O(en) 
the slope of the particle surface should everywhere (except at  the ends) be no 
larger than O(eZn). This is the sense in which the particle may have slowly 
varying axial changes in its cross-sectional characteristics. 

Now u(x) = u(5e + aR(& $)) = u(5) (1 + O(a))  and this implies that the right- 
hand side of (2.8) is independent of $ to the order indicated. This means that the 
integrals 

(2.11) 

(2.12) 

where I* = I-ee, are both independent of $ for all g. This observation allows 
a simplification of these forms. We first define the equivalent line Stokeslet 
density f(5) by 

f(5) = ~dBIR,(S, @)I F(5, 8). (2.13) 

Equation (2.12) may be recognized as an expression for the velocity of translation 
(as U, is independent of q5)  of an infinite cylinder in a direction perpendicular to 
its generators in an otherwise quiescent fluid, inertia being negligible. Unfortu- 
nately the problem for the general contour shape is as yet unsolved. It is, how- 
ever, possible to  show that U, is a linear function off, and, as Batchelor (1970) 
has shown, the proportionality tensor is symmetric, from which we may conclude 
that for each contour there exists an elliptic contour which produces the same 
relationship between U, and f .  In  the absence of any definite results for the 

50 F L M  52 
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general contour, we shall consider it to be replaced by its equivalent ellipse and 
leave the relationship between the two shapes as an open question. We may 

R(<,8) = a(<)cose+b(<)sinO, (2.14) 
therefore take 

where a and b are the scaled principal axes (i.e. a* = aaL and b* = baL are the 
actual sizes of the principal axes). By use of the standard methods for plane 
Stokes flows past elliptic sections it can be shown that 

u, = -% I* In - 2 + - a - aa+ 45) . f .  ' (  a+b a+ba2 a+bb2  
(2.15) 

Similarly, we recognize (2.11) as a problem arising in two-dimensional potential 
theory, in that e . F may be thought of as a source density distributed in such a 
way that the potential U, . e assumes a constant value on the contour. This 
problem may be reduced for the general contour, the result being 

U, = (1/27r)ln\W'(oo)lee.f(6), (2.16) 

where W is the conformal mapping of the exterior of the unit circle onto the 
exterior of the contour. For the case of the above elliptic section we would have 

IW'(0o)l = &(a+b). (2.17) 

Equation (2.8) may therefore be reduced to the one-dimensional integral 
equation 

U(C) = -- aL ((I + ee) .f(t) 
47rp 

H . f(5) + &(I + ee) .I '' f(7) - f(') d7 (1 + O(S")) , (2. i 8) 
-1 17-61 I )  

where the tensor H is given by 

4 b bb { a+b a+b b2 ' + 1n - + - + In (1 - ~ 2 ) )  - (2.19) 

This is the integral equation of Batchelor (1970, equations (7.1) and (7.2)), with 
the tensor H being here given explicitly in terms of the equivalent elliptic 
sections. 

3. The case of a uniformly twisted particle 
As an example of a particle for which the theory of 3 2 is applicable we take 

a particle of elliptic section which is of constant shape and size, but whose 
orientation varies in a uniform manner with < (see figure 1). Such a particle 
surface may be defined mathematically by taking a([) and b(c), as introduced 
in (2.14), to be given by 

(3.1) 
a(<) = a(i cos &w< + j sin &w<), 

b(<) = b( - i sin &w< + j cos gut), 
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where ai and bj are the principal axes at E = 0, and a and b are constants, subject 
of course to the constraint that the perimeter is to be 2nraL. This means that the 
pitch of twist p will be given by 

It has been shown (see appendix) that the present theory is valid for 

p = 4nL/w. (3.2) 

lRIl = O ( a - l ~ ~ ~ ) ;  

in this example lRrl = O(w) and so we find that w may lie in the range zero to  

The tensor H (equation (2.19) together with (2.17)) may be written for this 
O(a-V"). 

example as 

(3.3) I 4 
H = 2 ln--&++ln(1-f;2) ee+$(E)I*+KSZ(w(), { a+b 

(3.4) 

4 
where $ ( E )  = l n ~ b + & + ~ l n ( l - E 2 ) ,  

K = $(a-b)/(a+b),  

Q(w6)  = (ii - jj) cos wg + (ij + ji) sin W E .  

The form of H suggests that (2.18) should be split into its axial and transverse 
components. Let 

_L 

u = euA+I*.u,, e.uT = 0, 

f = efA+I*.f,, e.f, = 0, 

and further let 

(3.5) 

The axial component of (2.18) is, to within O ( E ~ ) ,  

We notice that this equation is independent of w,  that is, the axial component of 
the force distribution is independent of the twist to this order of approximation. 
The results of Batchelor (1970) for a cylindrical particle in axial motion may 
therefore be used for this component directly. 

The transverse component of (2.18) is, to within O(en), 

(3.8) 
anps 

f, = - U, - €[($I * + KQ) . f, + A{fT>]. 

If w = O( 1) then Batchelor's (1970) results may again be used directly. However, 
the theory is valid for values of w for which this is not the case, since the usual 
perturbation procedure for solving (3.8) is singular. We shall now concentrate on 
this case. Let 

where r, which may be a function of a and 8, is to be restricted by 

w = a-r, 

E < r < 1-2neln(l/s). 

(3.9) 

(3.10) 
50-2 
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The upper restriction ensures that we are in the region of validity and the lower 
restriction sufices for the usual perturbation procedure to be singular. 

We shall now show how (3.8) maybe reduced to an equation for which ordinary 
perturbation methods are regular. The operator A has the following properties: 
(i) A{constant} = 0, (ii) A{C} = - E,  (iii) if g(E) is a ftmction of E only (rather than 
of W E )  and is smooth in - 1 < E < + 1, but may have logarithmic singularities 
at f = 1, then 

A{g . S2} = -{In w + y + &In (1 - E2) }  g . S2( 1 + O(P) )  (3.11) 

for any m > 0, where y (2: 0.577) is Euler’s constant (it is the presence of the 
term In w = r / e  in this type of expression which renders the perturbation scheme 
singular). 

The form of (3.8) and property (iii) of A, together with the fact that SZ . S2 = I*, 
suggest that the solution should be sought in the form 

fT = f$’ (~)+Q(wLJ.f$) ( f ) .  (3.12) 

This form may be thought of as the sum of an ‘average’ term fp and a rapidly 
oscillating term Q.f$). We substitute (3.12) into (3.8) and compare the terms 
which vary slowly with 5, and those which vary rapidly (i.e. those terms con- 
taining In), to find 

We now introduce a constant parameter t: which conveys the effects of the twist: 

whence we may write f p  = --EKCf8)). 

This means that the force density is of the form 

fT = ( I * - € K g S Z ) . f f i ) ,  

where f$) satisfies the integral equation 

(3.14) 

This equation is similar to that for a particle with a circular cross-section, so the 
results of Batchelor (1970) are applicable. Together with (3.14) these results give 
the transverse force distribution 

where UT = u$?) + u p (  

and 
4 

a+b 
c = In- + & - C K ~ ~ .  (3.17) 



Slender twisted particle in Stokes flow 789 

Similarly, the axial component may be written as 

where u, = uy + u y  E,  

and (3.19) 

The:integral force parameters such as the total force and couple on the particle 
are obtained by integration of these distributions. The axial force FA is given by 

F’ = - 4n,~€L{ 1 + €( 1 -In 2)}/( 1 + E d )  as)( 1 + O(s2)). (3.20) 

For the transverse components it is evident that if w is sufficiently large then the 
rapidly varying terms depending upon S2 will in effect be self-cancelling. For this 
to occur it is sufficient for the relative error of O(e/w),  incurred in neglecting these 
contributions, to be O(s2),  that is T >, sln I/€. We shall therefore (for simplicity) 
restrict ourselves to the range 

sln(l/s) < T < 1-4eln(l/s). (3.21) 

The total transverse force F, and the couple C about the centre of the particle 
are given by 

(3.22) 

C = -&ud2{[1 +€($-1n2)]/(1 +s(c- 1)))e x @(l +O(e2)) .  (3.23) 

Although the rapidly varying part of the force distribution makes no direct 
contribution to the total force, it does have a residual effect in that the parameter 
c depends upon the twist (equation (3.17)). At first sight it may appear that this 
dependence is negligible to the order to which we are working. On closer inspec- 
tion, however, it can be seen that c may become as large as O( l/ln ( l /~) )  within the 
range of validity, which would make the contributions from the twist larger than 
the indicated error term. 

It is not difficult to see that if the particle is in axial motion then it experiences 
a force which is approximately the same as that experienced by a particle of the 
same length but with a circular cross-section of radius r,, where r, is, given by 

ra = ~ ( u * + b * ) ( l + O ( s ) ) .  (3.24) 

Similarly, for the particle in transverse motion the total force and couple are the 
same as those experienced by a particle of circular cross-section of radius rT, 
where 

F, = - 8 n ~ d { [ l + ~ ( l - h 2 ) ] / ( 1  +BC)}U$?)(~ -to(@)); 

r ,  = &(a*+b*) (l+O(e)). (3.25) 

The methods we have described in this paper should be applicable to a wider 
class of particle shapes than has been dealt with here, provided that the ‘slender- 
ness’ property is available for exploitation. For instance, for a particle which is 
a slender cylinder coiled into a helix with a ‘helical ’ diameter D and pitch P, we 
would expect to be able to use the analogue of the analysis presented here 
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provided that DIP = O(e2n) (if the working were being carried to order en),  e of 
course being based upon the cylinder aspect ratio. 

The author is indebted to the Science Research Council for a fellowship during 
the period in which this work was done. 

Appendix 
This appendix contains the detailed analysis by which we attempt to justify 

the passage from equation (2.7) to equation (2.8). 
As the tensor G has a singularity at  y = x, we remove a small portion of the 

surface around this point for separate consideration. Having done this, the 
remainder of the surface falls naturally into three other regions. To define these 
regions we introduce the small artificial parameters x, and x2, whose orders of 
magnitude are chosen to suit the needs of the analysis. The four regions are 
defined as follows: 

We shall now make the plausible assumption that the variations in F mirror 
the variations in the particle geometry. To render this idea more precise we 
assume that the particle surface is differentiable and that 

FO = O(]ROIF) = O(F), FC; = O(IR,IF). (A 1)  

The contributions to the integral in (2.7) from each of the four regions will be 
considered in turn. 

Contribution from B,. If we take x2,  xllRsl and aIRtI all to be o(1) then it 
is clear that the contribution from B, will be, to within an error of o(l) ,  the same 
as if B, were a plane rectangle of size 2x1 by 2xz(RO( = 2 ~ ; .  Therefore, in B,, 
F(% 6 )  = F(5,$) (1 +0(1)) and lR0(7,@1 = (R&& $11 (1 +o(l)) ,  and hence 

where 2 and j are the base vectors defining the approximating plane rectangle. 
If we let x1 = o ( x z ) ,  then In xz = o(ln xl) and the above integral may be evaluated 
t o  yield the estimate 

Hence we may neglect all contributions from B, provided that 
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Contribution from B,. By use of the approximate surface element we may write 

As r = O( 1) in this region, it is not difficult to show that 

1"" dy G = (I + ee) In (1 + 5)/xl + o(a/xI). 
-1 

Consequently, provided that 
4x1 = O(en), 

Contribution from B,. The arguments used to evaluate the contribution from 
B, are immediately applicable here. If (A 5 )  holds then 

( I  + O(cn)). (A 7) 
N 

Contribution from B,. We write 

where f' denotes integration over all 8 not in (q5 - xz, q5 + xz). Consider 
and let q = 5 + a x ,  then 

l7 [+XI [+XI I + ee z(er + re) + (rr - rzee) LXl dq = sf-xldz {- + (22 + r2)t 
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and 

with I' as defined in (2.9). Therefore 

r = WE+ a%, 6 )  - W, 4) = r + O( IRgI xl), 

Hence, by use of (A 5) and the condition (cf. (A 3)) 

P S I  XI = W), 
we have that 

A similar argument leads to the result 

d7 G . N  = O(a(RE( InaF), 

where use has been made of the assumption in (A 1). Consequently if we take 

a lRSl l na  = O(@) 
then 

The integral $' over this integrand may be replaced by the integral over all 0 
with an error of O(X21n x2F), and so we further take 

X21nx2 = O ( E ~ ) .  
Finally, we note that 

which in conjunction with (A 8) allows us to write 

Equations (A2), (A6), (A7) and (A 12) together show that (2.8) is a valid con- 
sequence of (2.7), provided that the previously mentioned end effects can be 
neglected, that assumption (A 1) is valid and that we can choose x1 and xz, and 



Slender twisted particle in Stokes flow 793 

sensibly restrict lRIl so that the inequalities (A 3), (A 5), (A 8), (A 9) and (A 10) 
are satisfied. The optimum values (in the sense that lRsl achieves the widest 
range of values) of x1 and xz to  satisfy the inequalities are 

xz = a" for 0 < v < 1, x1 = ae-", (A 13) 

whence IRtI = O(a- l~~") .  (A 14) 

This indicates that the theory is restricted to particles whose surface slopes are 
of O ( @ ) ,  at least for the accuracy required. 
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